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Abstract

We give a new proof of the Frankl-Rödl theorem on forbidden in-
tersections, via the probabilistic method of dependent random choice.
Our method extends to codes with forbidden distances, where over
large alphabets our bound is significantly better than that obtained by
Frankl and Rödl. We also apply our bound to a question of Ellis on
sets of permutations with forbidden distances, and to establish a weak
form of a conjecture of Alon, Shpilka and Umans on sunflowers.

1 Introduction

A family A of sets is said to be l-avoiding if |A ∩ B| 6= l for all A,B ∈ A.
Erdős conjectured (see [9]) that for any ε ∈ (0, 1) there is δ = δ(ε) > 0
such that given l with εn ≤ l ≤ (1/2− ε)n, any l-avoiding family A ⊂ P[n]
satisfies |A| ≤ (2 − δ)n and offered $250 for a solution. In [14], Frankl
and Rödl gave a positive answer to Erdős’ conjecture, proving a stronger
result for k-uniform l-avoiding families. Note that for A,B ∈

([n]
k

)
, their

intersection satisfies max(0, 2k−n) ≤ |A∩B| ≤ k. Now it is easily seen that
if l ≥ k−o(n) or l ≤ max(0, 2k−n)+o(n) then there exist l-avoiding families

A ⊂
([n]
k

)
with |A| = (1 − o(1))n

(
n
k

)
. Frankl and Rödl showed that for l in

between these extremes, all k-uniform l-avoiding families have exponentially
small density.
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Theorem 1 (Frankl-Rödl). Let α, ε ∈ (0, 1) with ε ≤ α/2. Let k = bαnc
and l ∈ [max(0, 2k − n) + εn, k − εn]. Then any l-avoiding family A ⊂

([n]
k

)
satisfies |A| ≤ (1− δ)n

(
n
k

)
where δ = δ(α, ε) > 0.

Theorem 1 along with several extensions of the theorem proved in [14] have
had a huge impact in a number of different areas including discrete geometry
[15], communication complexity [20] and quantum computing [6].

In Section 2 of this paper we give a new proof of Theorem 1. We show
that the theorem can in fact be deduced from an earlier theorem due to
Frankl and Wilson (see Theorem 13 below). While our new proof of Theorem
1 does not seem to improve on the bounds given in [14], the same proof
method does significantly improve bounds when we forbid distances over a
larger underlying alphabet. Given q ∈ N, q ≥ 2, we will say that a set
C is a q-ary code if C ⊂ [q]n. The Hamming distance between two words
x, y ∈ [q]n is written as dH(x, y) = |{i ∈ [n] : xi 6= yi}|. For a code C we
write d(C) = {dH(x, y) : distinct x, y ∈ C} ⊂ [n]. Frankl and Rödl used
Theorem 1 to prove the following result:

Theorem 2 (Frankl-Rödl). Let C ⊂ [q]n, and let ε satisfy 0 < ε < 1/2.
Suppose that εn < d < (1 − ε)n, and d is even if q = 2. If d /∈ d(C), then
|C| ≤ (q − δ)n with some positive constant δ = δ(ε, q).

(Note that, in order for Theorem 2 to hold for q = 2, we must have that
d is even since the set C0 = {x ∈ {0, 1}n :

∑
i xi ≡ 0 (mod 2)} satisfies

|C0| = 2n−1 but contains no odd distances.)
In Section 3, we improve this to the following:

Theorem 3. Let C ⊂ [q]n, and let ε satisfy 0 < ε < 1/2. Suppose that
εn < d < (1 − ε)n, and d is even if q = 2. If d /∈ d(C), then |C| ≤ q(1−δ)n

with some positive constant δ = δ(ε).

As a consequence of Theorem 3 we obtain a Frankl-Rödl type theorem
for permutations. Given two permutations π, ρ ∈ Sn we write

dSn(π, ρ) = |{i ∈ [n] : π(i) 6= ρ(i)}|.

For a set S ⊂ Sn we write

dSn(S) = {d ∈ [n] : d(π, ρ) = d for distinct π, ρ ∈ S}.

Recently Ellis [10] asked how large a family S ⊂ Sn can be if d /∈ dSn(S) for
some d ∈ [n]. A result of Deza and Frankl [8] answers this question for d = n,
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showing that the largest such families have size (n − 1)!. Ellis [10] gave a
tight upper bound of (n−2)! when d = n−1, provided n is sufficiently large.
Here we consider this question when εn < d < (1− ε)n for ε > 0. It is easily
seen that for such d there exist sets of permutations S ⊂ Sn with d /∈ dSn(S)
such that |S| ≥ (n!)c where c = c(ε) ∈ (0, 1). By taking q = n and viewing
permutations π ∈ Sn as vectors in [q]n, with π = (π(1), . . . , π(n)), since
|Sn| = n! = q(1−o(1))n, Theorem 3 has the following consequence:

Theorem 4. Let S ⊂ Sn, and let ε satisfy 0 < ε < 1/2. Suppose that
εn < d < (1 − ε)n. If d /∈ dSn(S), then |S| < (n!)(1−δ) with some positive
constant δ = δ(ε).

Before we discuss another consequence of Theorem 3, we need the fol-
lowing definition.

Definition 5. Given v, w ∈ [q]n let Agree(v, w) = {i ∈ [n] : (v)i = (w)i}.
A collection of vectors v1, . . . , vk ∈ [q]n is said to form a strong sunflower
with k petals in [q]n if there is a fixed set S ⊂ [n] such that Agree(vi, vj) = S
for all distinct i, j ∈ [k]. A collection of vectors v1, . . . , vk ∈ [q]n is said
to form a weak sunflower with k petals in [q]n if there is D ∈ N such that
|Agree(vi, vj)| = D for all distinct i, j ∈ [k].

Using Theorem 1, Frankl and Rödl proved that for any k ∈ N there exists
δ = δ(k) > 0 such that if A ⊂ {0, 1}n with |A| > (2 − δ)n then A contains
a weak sunflower with k petals. Similarly, using the methods from [14] it
can be shown that for any k ∈ N there exists δ = δ(q, k) > 0 so that given
a code C ⊂ [q]n with |C| ≥ (q − δ)n, C contains a weak k-petal sunflower in
[q]n. In Section 4 we prove the following:

Theorem 6. Given k ∈ N, there exists δ = δ(k) > 0 such that the following
holds. For q ≥ 2, every C ⊂ [q]n which does not contain a weak sunflower
with k petals satisfies |C| ≤ q(1−δ)n.

This might be seen as giving evidence to a recent conjecture of Alon, Shpilka
and Umans [2] who asked for a similar bound on families not containing a
strong sunflower with 3 petals in [q]n.

A crucial idea in the original proof of Theorem 1, along with an ingenious
density increment argument, was to prove a stronger result. In [14] the
authors actually proved a cross-intersecting version of Theorem 1:

Theorem 7 (Frankl-Rödl). Let α, ε ∈ (0, 1) with ε ≤ α/2. Let k = bαnc
and l ∈ [max(0, 2k−n)+εn, k−εn]. Then if A1,A2 ⊂

([n]
k

)
with |A1∩A2| 6= l

for all Ai ∈ Ai, they satisfy |A1||A2| ≤ (1− δ)n
(
n
k

)2
, where δ = δ(α, ε) > 0.
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We draw attention to the fact that the corresponding cross versions of
Theorem 3 and Theorem 4 with our improved bounds do not hold in general.
Indeed, for even n, if we takeA1 to be the collection of all permutations in Sn
sending [n/2] to [n/2] and A2 to be the collection of all permutations in Sn
sending [n/2] to [n/2 + 1, n] we see that |Ai| ≥ (n/2)!2 ≥ n!/3n = (n!)1−o(1)

but dSn(ρ1, ρ2) = n for all ρi ∈ Ai.
However, in Section 5 we give a simple condition which guarantees fixed

distances between such sets.

Theorem 8. Given ε ∈ (0, 1/2) there exists δ′, γ > 0 such that the following
holds. Let q ≥ 3 and suppose that C,D ⊂ [q]n with |C| ≥ q(1−δ

′)n and such
that for all x ∈ C there exists y ∈ D with dH(x, y) ≤ γn. Then given any
d ∈ (εn, (1− ε)n), there exists x ∈ C and y ∈ D with dH(x, y) = d.

Using Theorem 8 in combination with some isoperimetric results, we
recover a version of Frankl and Rödl’s cross-distance result for fixed q.

Corollary 9. Given ε ∈ (0, 1/2) and q ≥ 3 there exists δ = δ(ε, q) > 0 such
that the following holds. Suppose that C,D ⊂ [q]n with |C||D| > (q − δ)2n.
Then given any d ∈ (εn, (1 − ε)n), there exists x ∈ C and y ∈ D with
dH(x, y) = d.

Lastly, note that given d ∈ [n] and any x ∈ [q]n, there are exactly(
n
d

)
(q − 1)d words y ∈ [q]n with dH(x, y) = d. In Section 6, we prove a

supersaturated version of Theorem 3 (which is essentially best possible):

Theorem 10. Given ε, η ∈ (0, 1/2) there is δ′ > 0 such that the following
holds. Let C ⊂ [q]n with |C| > q(1−δ

′)n and d ∈ N with εn < d < (1−ε)n (and
d even if q = 2). Then there are at least

(
n
d

)
(q − 1)d|C|q−ηn pairs x, y ∈ C

with dH(x, y) = d.

Notation: Given a set X, P(X) will denote the power set of X and
(
X
k

)
will denote the collection of all subsets of size k in X. Given m,n ∈ N with
m ≤ n, [n] = {1, . . . , n} and [m,n] = {m, . . . , n}. We also write (n)m for
the falling factorial (n)m = n(n− 1) · · · (n−m+ 1).

2 Forbidding one intersection

In this section we give our new proof of Theorem 1. Before beginning, we
outline the argument for the proof. In Lemma 12 below, we will show that
given upper bounds on the size of ki-uniform and li-avoiding families on
ni vertices for i = 1, 2, it is possible to obtain upper bounds on the size
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of (k1 + k2)-uniform and (l1 + l2)-avoiding families on (n1 + n2) vertices.
The second tool we will need in the proof is the Frankl-Wilson theorem (see
Theorem 13 and Corollary 14 below) which shows that the conclusion of
Theorem 1 holds true for k-uniform, l-avoiding families whenever k − l is a
prime.

Suppose now that k, l and n are given as in the statement of Theorem 1,
and assume that k− l is odd. Let us choose k1, k2, k3 ∈ N and n1, n2, n3 ∈ N
with |ki−k/3| < 1 and |ni−n/3| < 1 so that k =

∑3
i=1 ki and n =

∑3
i=1 ni.

We will also use a Vinogradov-type result due to Baker and Harman (see
Theorem 15 below) which shows that any odd integer m can be written as
a sum of three primes m = a1 +a2 +a3, where |ai−m/3| = o(m). Applying
this to k− l we find three primes k− l = a1 + a2 + a3 with |ai− (k− l)/3| =
o(k − l) = o(n). Now set li = ki − ai for all i ∈ [3]. Since ki − li = ai
is prime for all i, by the Frankl-Wilson theorem we know that Theorem 1
holds for ki-uniform and li-avoiding families on ni vertices, for all i ∈ [3].
Using Lemma 12 this will show that Theorem 1 holds for (k1 + k2)-uniform
and (l1 + l2)-avoiding families on (n1 +n2) vertices. By applying Lemma 12
once again, we obtain that Theorem 1 holds for k-uniform and l-avoiding
families on n vertices, since k =

∑3
i=1 ki, n =

∑3
i=1 ni and l =

∑3
i=1 li . The

case when k − l is even follows similarly, by writing k − l as a sum of four
primes.

To prove Lemma 12 we will make use of the probabilistic technique
known as dependent random choice. The reader is directed to the recent
survey of Fox and Sudakov [11] where many other interesting applications
of the method are discussed. The following lemma gives a statement of the
method which we will use in our applications. We include the short proof
for convenience.

Lemma 11. Suppose that G = (X,Y,E) is a bipartite graph with |X| =
M, |Y | = N and |E| = αMN . Then, for any t ∈ N, there exists X ′ ⊂
X with |X ′| ≥ αtM/2 with the property that for all x1, x2 ∈ X ′ we have
|NG(x1) ∩NG(x2)| ≥ αM−1/tN .

Proof. To begin choose uniformly at random t elements T with replacement
from Y and let S denote the set of elements adjacent to all elements of T .
By linearity of expectation

E(|S|) =
∑
x∈X

( |NG(x)|
|Y |

)t
≥ αtM

where the inequality follows from the convexity of the function f(z) = zt.
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We will say that a pair x, x′ in S are bad if |NG(x)∩NG(x′)| < αM−1/tN .

Now any bad pair has probability at most ( |NG(x1)∩NG(x2)|N )t ≤ αtM−1 of
appearing in S. Therefore, letting Z denote the number of bad pairs in S,
we find that

E(Z) ≤ αtM−1
(
|X|
2

)
≤ αtM/2.

In particular, E(|S| −Z) ≥ αtM/2. Fix a choice of T such that |S| −Z is at
least this big and delete one element from each bad pair x1, x2 in S. Taking
X ′ to be the remaining set, we have |X ′| ≥ |S| − Z ≥ αtM/2 and no pairs
in X ′ are bad, as required.

The next lemma shows how one can use Lemma 11 to build fixed inter-
sections from smaller ones.

Lemma 12. For i = 1, 2, suppose that ni, ki, li ∈ N and pi ∈ (0, 1) are such

that any li-avoiding family Ai ⊂
([ni]
ki

)
satisfies |Ai| ≤ pi

(
ni
ki

)
. Suppose that

t ∈ N satisfies
(
n1

k1

)−2
> pt2. Then any (l1+ l2)-avoiding family A ⊂

([n1+n2]
k1+k2

)
satisfies |A| ≤ (2p1)

1/t
(
n1+n2

k1+k2

)
.

Proof. Let A ⊂
([n1+n1]
k1+k2

)
have size |A| = α

(
n1+n2

k1+k2

)
. We show that if α >

(2p1)
1/t, then there exist A,A′ ∈ A with |A ∩A′| = l1 + l2.

To begin, choose a partition of [n1 + n2] uniformly at random into two
sets V1 and V2 of size n1 and n2 respectively. Let A′ ⊆ A denote the set

A′ = {A ∈ A : |A ∩ V1| = k1, |A ∩ V2| = k2}

and let Z denote the random variable Z = |A′|. It is easy to see that
E(Z) = α

(
n1

k1

)(
n2

k2

)
. We fix a partition V1 ∪ V2 = [n1 + n2] for which Z is at

least this large.
Now we can view A′ as the edge set of a bipartite graph G = (X,Y,E)

with vertex bipartition X =
(
V1
k1

)
and Y =

(
V2
k2

)
in which AB ∈ E(G) when

A ∪ B ∈ A′. We see that G has at least α|X||Y | edges. Apply Lemma 11
to G with t as in the statement to find a set X ′ ⊂ X with |X ′| ≥ αt|X|/2
such that all distinct pairs A1, A2 ∈ X ′ have at least α|X|−1/t|Y | common
neighbours in G. Now if α > (2p1)

1/t then |X ′| > p1
(
n1

k1

)
and by definition

of p1, we find A1, A2 ∈ X ′ with |A1 ∩A2| = l1.
Let B′ denote the set of common neighbours of A1 and A2 in G. By

Lemma 11 we find that

|B′| ≥ α|X|−1/t|Y | > (2p1)
1/t|X|−1/t|Y | ≥

(
n1
k1

)−2/t
|Y | > p2

(
n2
k2

)
.
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The third inequality here holds since by definition of p1 we have p1 ≥ 1/
(
n1

k1

)
and the fourth holds as

(
n1

k1

)−2
> pt2. But now by definition of p2, there

exists B1, B2 ∈ B′ with |B1 ∩ B2| = l2. By construction it can be seen that
we have A1 ∪B1, A2 ∪B2 ∈ A and clearly |(A1 ∪B1) ∩ (A2 ∪B2)| = l1 + l2,
as required.

We will also make use of a theorem of Frankl and Wilson from [16].

Theorem 13 (Frankl-Wilson). Let k, l ∈ N such that k− l is a prime power

and 2l + 1 ≤ k. Suppose that A ⊆
([n]
k

)
is an l-avoiding family. Then

|A| ≤
(

n
k−l−1

)
.

The following simple corollary of Theorem 13 will give us a slightly more
convenient bound.

Corollary 14. Let ε ∈ (0, 1) and let l, k ∈ N with l < k, such that k − l is
prime with max(0, 2k − n) + εn < l < k − εn. Then any l-avoiding family

A ⊂
([n]
k

)
satisfies |A| ≤ cn

(
n
k

)
where c = c(ε) < 1.

Proof. Let A be an l-avoiding family with |A| = α
(
n
k

)
. By averaging, there

exists a set T ∈
( [n]
l−εn

)
such that AT = {A ∈

( [n]\T
k−|T |

)
: A ∪ T ∈ A} has size

|AT | ≥ α
(n−|T |
k−|T |

)
. Setting l′ = εn and k′ = k−|T | it is easy to see that AT is

an l′-avoiding k′-uniform family. Since k′ = k− l+εn ≥ 2εn+1 = 2l′+1 and
k′ − l′ = k − l is prime, by Theorem 13, we have |AT | ≤

(n−|T |
k′−l′

)
=
(n−|T |
k−l

)
.

This gives that

α ≤
(n−|T |
k−l

)(n−|T |
k−|T |

) =
(k − |T |)!(n− k)!

(k − l)!(n− k + εn)!

=
(k − l + εn)εn
(n− k + εn)εn

≤
( k − l + εn

n− k + εn

)εn ≤ ( 1

1 + ε

)εn
since n− k ≥ k − l + εn. Taking c = ( 1

1+ε)
ε < 1, the result follows.

Lastly, we will use the following Vinogradov-type result due to Baker
and Harman [5] which says that every large enough odd number can be
written as a sum of three primes of almost equal size.

Theorem 15 (Baker-Harman). Every odd integer n > n0 can be written as
a sum of three primes n = a1 + a2 + a3 with |ai − n/3| ≤ n4/7 for all i.
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Proof of Theorem 1. Let A ⊂
([n]
k

)
be an l-avoiding family which satisfies

l ∈ [max(0, 2k − n) + εn, k − εn]. We wish to show that |A| ≤ (1 − δ)n
(
n
k

)
,

where δ = δ(α, ε) > 0. By taking δ to be sufficiently small, we may assume
that the theorem holds for small values of n ≤ n0 = n0(ε), so we will assume
that n ≥ n0.

First suppose that k− l is odd. Choose k1, k2, k3 ∈ N and n1, n2, n3 ∈ N
with

∑3
i=1 ki = k and

∑3
i=1 ni = n with |ki − k/3| < 1 and |ni − n/3| < 1

for all i, with n1 ≥ n2 ≥ n3. By Theorem 15, as k − l > εn and n > n0(ε),
we can write k− l = a1 + a2 + a3 where ai is prime and |(k− l)/3− ai| ≤ εn

8
for all i. Also set li = ki − ai for all i. Then ki − li is prime for all i,∑

i ki − li = k − l and max(0, 2ki − ni) + εni/2 ≤ li ≤ ki − εni/2.

By Corollary 14 any li-avoiding family Ai ⊂
([ni]
ki

)
satisfies |Ai| ≤ pi

(
ni
ki

)
where pi = cni1 with c1 = c(ε/2) < 1. Taking t1 = d2/ log2(1/c1)e we find

pt12 = ct1n2
1 ≤ 2−2n1 <

(
n1
k1

)−2
.

Therefore, by Lemma 12 any (l1 + l2)-avoiding family B ⊂
([n1+n2]
k1+k2

)
with

|B| = β
(
n1+n2

k1+k2

)
satisfies β ≤ (2cn1

1 )1/t1 .
To complete the proof we simply repeat the previous argument again.

Let t2 = d4t1/ log2(1/c1)e. Then we have

βt2 ≤ ((2cn1
1 )1/t1)t2 ≤ (2cn1

1 )4/ log2(1/c1) ≤ 2−2n3 <

(
n3
k3

)−2
where the third inequality holds since n ≥ n0(ε). Lemma 12 now gives that

any l-avoiding family A ⊂
([n]
k

)
satisfies |A| ≤ cn2

(
n
k

)
where c2 = (cn3

1 )1/t2n ≤
c
1/4t2
1 < 1. As c1 and t2 depend only on ε, this completes the proof in the

case when k − l is odd.
The case where k− l is even can be proved by splitting k− l into 4 primes

of almost equal size. The proof now proceeds identically to the odd case,
using an additional application of Lemma 12.

3 Forbidding code distances

In this section we prove Theorem 3. We will assume that q ≥ 3 throughout
the section, as the case q = 2 follows from Theorem 1.

Given a set V ⊂ [n], a vector x ∈ [q]V will be indexed by elements of V ,
i.e. x = (xi)i∈V . Given two disjoint sets V and W and vectors x ∈ [q]V and
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y ∈ [q]W , we write x ◦ y for the vector x ◦ y ∈ [q]V ∪W , the concatenation of
x and y, given coordinatewise by

(x ◦ y)i =

{
xi if i ∈ V
yi if i ∈W.

Given a collection of disjoint sets V1, . . . , Vk and vectors xi ∈ [q]Vi for all
i ∈ [k], we will write x1 ◦ x2 · · · ◦ xk ∈ [q]∪iVi to be the vector

x1 ◦ x2 · · · ◦ xk = (((x1 ◦ x2) ◦ x3) ◦ · · · ◦ xk).

(Note, this notation does not depend on the order that the xi are taken in).
We also require the following definition:

Definition 16. Given a prime p and a set D ⊂ Zp \{0}, we say that a code
C ⊂ [q]n is a D (mod p)-code if for all d ∈ d(C), we have d ≡ d′ mod p for
some d′ ∈ D.

The following theorem, due to Frankl [12] (see also [4]), gives an upper
bound on the size of (mod p)-codes .

Theorem 17 (Frankl). Suppose that p is a prime and that C ⊂ [q]n is a D
(mod p)-code with |D| = l. Then |C| ≤

∑l
i=0

(
n
i

)
(q − 1)i.

In applying Theorem 17 we use the following estimate due to Chernoff
[7]. Let q ∈ N with q ≥ 3. Then given α ∈ (0, (q − 1)/q), we have

Sq(α, n) :=

αn∑
i=0

(
n

i

)
(q − 1)i ≤ qfq(α)n

where fq(α) = α logq(
q−1
α ) + (1− α) logq(

1
1−α).

Proposition 18. For q ≥ 3 and α ∈ [0, 3/5] we have Sq(α, n) ≤ q(1−1/125)n.

Proof. First note the following:

(i)
∂fq
∂α (α) = logq

[
(q−1)(1−α)

α

]
≥ 0 for α ∈ [0, (q − 1)/q];

(ii)
∂2fq
∂α2 (α) = 1

loge q

[
− 1

1−α −
1
α

]
≤ 0, so fq(α) is concave as a function of

α on [0, 1]. As fq(0) = 0 and fq(
q−1
q ) = 1, this shows that fq(α) ≥ qα

q−1
for α ∈ [0, (q − 1)/q];

(iii)
∂fq
∂q (α) = 1

q loge q

[
qα
q−1 − fq(α)

]
≤ 0 for α ∈ [0, (q − 1)/q] by (ii).
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But then, for q ≥ 3 and α ∈ [0, 3/5] ⊂ [0, (q − 1)/q], we have

fq(α) ≤ f3(α) ≤ f3(3/5) ≤ 0.992,

where the first inequality holds since fq(α) is decreasing in q by (iii), the
second since f3(α) is increasing in α by (i) and the third by a numerical
calculation.

Combined with Proposition 18, Theorem 17 now gives the following
corollary.

Corollary 19. Let ε ∈ (0, 1) and q ≥ 3. Suppose that p is a prime with
εn < p < 3n/5 and that C ⊂ [q]n is a code with p /∈ d(C). Then |C| ≤ q(1−δ1)n
where δ1 = δ1(ε) > 0.

Proof. Suppose that |C| = αqn. Choose t so that p ∈ (n−t2 , 3(n−t)5 ) – this

is possible by the stated bound on p above. Now given a set T ∈
(
[n]
t

)
and

elements ai ∈ [q] for i ∈ T , let

CT = {x ∈ C : xi = ai for all i ∈ T}.

By averaging we find T ∈
(
[n]
t

)
and {ai ∈ [q] : i ∈ T} such that |CT | ≥ αqn−t.

View CT as a subset of [q][n]\T . Clearly p /∈ d(CT ). Since p > (n− t)/2, the
set CT is a D (mod p) code in [q][n]\T , where D = {1, . . . , p− 1}. Therefore
by Theorem 17 and Proposition 18

αqn−t ≤ |CT | ≤ Sq(3/5, n− t) ≤ q(1−1/125)(n−t).

Therefore α ≤ q−(n−t)/125 ≤ q−εn/125 using εn ≤ p ≤ n − t. Taking δ1(ε) =
ε/125 completes the proof.

Corollary 19 will allow us to deal with forbidden distances which are not
too large. For larger distances we will use the following diametric theorem
for [q]n due to Ahlswede and Khachatrian [1]. The diameter of a set C ⊂ [q]n,
diam(C), is defined as

diam(C) := max{d : d ∈ d(C)}.

Given t ∈ N and r ∈ N ∪ {0}, let Kr(t) ⊂ [q]n denote the set

Kr(t) = {v ∈ [q]n : |{i ∈ [t+ 2r] : vi = 1}| ≥ t+ r}.

It is easy to see that diam(Kr(t)) = n− t for all r. The following remarkable
result shows that given q and t, for some r, Kr(t) is the largest code in [q]n

with diameter n− t.
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Theorem 20 (Ahlswede, Khachatrian). Let q, t ∈ N with q ≥ 2 and let
r ∈ N ∪ {0} be the largest integer such that

t+ 2r < min
{
n+ 1, t+ 2

t− 1

q − 2

}
. (1)

Then any code C ⊂ [q]n with diam(C) ≤ n − t satisfies |C| ≤ |Kr(t)|. (By
convention, (t− 1)/(q − 2) =∞ if q = 2.)

We will use the following simple consequence of Theorem 20.

Corollary 21. Given ε ∈ (0, 1/3) and q ∈ N with q ≥ 3, every set C ⊂ [q]n

with diam(C) ≤ (1− ε)n satisfies |C| ≤ q(1−δ2)n where δ2 = δ2(ε) > 0.

Proof. Let t = εn. Since ε < 1/3, we have

n+ 1 > εn+ 2εn− 1 ≥ t+ 2
t− 1

q − 2
,

so the minimum in (1) is attained by the right hand term and gives r =
d(t − 1)/(q − 2)e − 1 in Theorem 20. Therefore to prove the statement, by
Theorem 20 it suffices to prove that |Kr(t)| ≤ q(1−δ2)n. We have

|Kr(t)| =
( r∑
i=0

(q − 1)i
(
t+ 2r

i

))
qn−t−2r = Sq

( r

t+ 2r
, t+ 2r

)
qn−t−2r

≤ q(1−1/125)(t+2r)qn−t−2r = qn−(t+2r)/125 ≤ q(1−ε/125)n,

using Proposition 18 in the first inequality and that εn ≤ t < t + 2r in the
second. Taking δ2(ε) = ε/125 completes the proof.

The next lemma is an analogue of Lemma 12 for subsets of [q]n and can
be proved similarly.

Lemma 22. For i = 1, 2, suppose that ni, di ∈ N and pi ∈ (0, 1) are such
that if Ci ⊂ [q]ni with di /∈ d(Ci) then |Ci| ≤ piq

ni. Suppose that t ∈ N
satisfies q−2n1 > pt2. Then any set C ⊂ [q]n1+n2 with d1 + d2 /∈ d(C) satisfies
|C| ≤ (2p1)

1/tqn1+n2.

We are now ready for the proof of Theorem 3.

Proof of Theorem 3. Let C ⊂ [q]n with |C| = αqn where q ≥ 3 and suppose
that for some d ∈ [εn, (1 − ε)n] we have d /∈ d(C). We wish to show that
α ≤ q−δn where δ = δ(ε) > 0. By taking δ sufficiently small, we can assume

11



that the result holds for n < n0(ε), so we will assume that n ≥ n0. The proof
will split into two cases, according as d ∈ [εn, 1120n] or d ∈ [1120n, (1− ε)n].
Case 1: d ∈ [εn, 1120n]

We will suppose that d is odd, as the case of even d is similar. As d ≥ εn,
provided n ≥ n0(ε), Theorem 15 allows us to write d = d1 +d2 +d3 where di
are primes with |di − d/3| ≤ εn/100. Also, partition n as a sum of naturals
n = n1 + n2 + n3 where |ni − n/3| ≤ 1 with n1 ≥ n2 ≥ n3. For n ≥ n0(ε)
this gives that for all i ∈ [3] we have

di ≥ d/3− εn/100 ≥ εn/3− εn/100 ≥ εni/2 (2)

and
di ≤ d/3 + εn/100 ≤ 11n/60 + εn/100 < 3ni/5. (3)

Now set V1 = [n1], V2 = [n1 + 1, n1 + n2] and V3 = [n1 + n2 + 1, n]. For
each i = 1, 2, 3 we have that di is prime and by (2) and (3) it satisfies
ε|Vi|/2 ≤ di ≤ 3|Vi|/5. This gives that the hypotheses of Corollary 19 are
satisfied (taking ε/2 in place of ε) and therefore any code Ci ⊂ [q]Vi with
di /∈ d(Ci) satisfies |Ci| ≤ piqni where pi = q−δ1(ε/2)ni .

We now use these bounds to obtain an upper bound on the size of codes
B ⊂ [q]V1∪V2 with d+ := d1 + d2 /∈ dH(B) using Lemma 22. We first claim
that taking t1 = d4/δ1(ε/2)e, we have q−2n1 > pt12 . Indeed,

pt12 = q−δ1(ε/2)n2t1 ≤ q−δ1(ε/2)n2(
4

δ1(ε/2)
)

= q−4n2 < q−2n1 ,

since n2 > n1/2. Lemma 22 then shows that any code B ⊂ [q]V1∪V2 with
d+ /∈ d(B) satisfies |B| ≤ α1q

n1+n2 where α1 = (2q−δ1(ε/2)n1)1/t1 .
To complete the proof we now repeat the previous argument to obtain a

bound for codes C ⊂ [q]V1∪V2∪V3 = [q]n with d = d+ + d3 /∈ dH(C). We first
claim that setting t2 = d4t1/δ1(ε/2)e we have αt21 < q−2n3 . Indeed,

αt21 = (2q−δ1(ε/2)n1)t2/t1 ≤ (2q−δ1(ε/2)n1)4/δ1(ε/2) = 24/δ1(ε/2)q−4n1 < q−2n3 .

The last inequality holds since 24/δ1(ε/2) < 22n/3 ≤ q2n/3 ≤ q2n1 for n ≥
n0(ε) ≥ 2/δ1(ε/2).

Now any code B ⊂ [q]V1∪V2 with d+ /∈ dH(B) satisfies |B| ≤ α1q
n1+n2

and any code C3 ⊂ [q]V3 with d3 /∈ d(C3) satisfies |C3| ≤ p3q
n3 where

p3 = q−δ1(ε/2)n3 and αt21 < q−2n3 . Therefore by Lemma 22 any code
C ⊂ [q]V1∪V2∪V3 = [q]n with d = d+ + d3 /∈ d(C) satisfies |C| ≤ α2q

n where

α2 = (2p3)
1/t2 ≤ (2q−δ1(ε/2)n3)1/t2 = 21/t2q−δ1(ε/2)n3/t2

≤ 2q−δ1(ε/2)n/4t2 ≤ q−δ1(ε/2)n/8t2 = q−δ3(ε)n

12



where δ3(ε) := δ1(ε/2)/8t2. The last inequality here holds since for n > n0(ε)
we have 2 ≤ qδ1(ε/2)n/8t2 .

Case 2: d ∈ [1120n, (1− ε)n]
We will prove this case using Case 1 above. The proof will work as

follows. We will choose a partition [n] = V1 ∪V2 and use dependent random
choice to find a large subset X ⊂ [q]V1 such that for each pair of elements
x, x′ ∈ X, the set of common extensions y ∈ [q]V2 with x◦y, x′ ◦y ∈ C is also
large. We can then apply Corollary 21 to find a pair x, x′ ∈ X at Hamming
distance d′ ≈ |V1|. Provided |V1| is carefully chosen, this will ensure that
d− d′ ≤ 3|V2|/5. We may apply then apply Case 1 to the set of extensions
of x and x′ to find a pair y, y′ with dH(y, y′) = d− d′. Then x ◦ y, x′ ◦ y′ ∈ C
lie at Hamming distance d.

Let δ3 denote the same function as in Case 1 and let δ2 denote the
function in Corollary 21. Choose n1 ∈ [n] such that

|29

40
n1 +

11

40
n− d| ≤ 1. (4)

As d ≥ 11
20n, this gives n/4 ≤ n1 ≤ (1 − ε)n. Take t = d2/εδ3(1/4)e and

δ4(ε) = δ2(ε/4)/8t > 0. We will show that if C ⊂ [q]n where |C| = αqn with
α > q−δ4(ε)n then C contains two words at Hamming distance d.

To begin, partition [n] = V1 ∪ V2 where V1 = [n1] and V2 = [n1 + 1, n].
We set n2 = n−n1 = |V2|. As in Lemma 12, view the elements of C as edges
of a bipartite graph G = (X,Y,E) with bipartition X = [q]V1 and Y = [q]V2 ,
where xy ∈ E(G) if x ◦ y ∈ C. Clearly |E(G)| = α|X||Y |. Apply Lemma 11
to G with t as above to find a set X ′ ⊂ X with

|X ′| = αt|X|/2 > q−δ4(ε)tnqn1/2 = q−δ2(ε/4)n/8qn1/2

≥ q−δ2(ε/4)n/4qn1 ≥ q(1−δ2(ε/4))n1

(using qδ2(ε/4)n/8 ≥ 2 for n ≥ n0(ε) and n1 ≥ n/4) such that all distinct x, x′

in X ′ share at least α|X|−1/t|Y | common neighbours in Y . By Corollary 21
(with ε/4 in place of ε) there exists x, x′ ∈ X ′ with dH(x, x′) = d′, with d′

satisfying (1 − ε/4)n1 ≤ d′ ≤ n1. Let B ⊂ [q]V2 denote the set of common
extensions of x, x′ in Y . We have

logq |B| ≥ logq(α|X|−1/t|Y |) > logq(q
−δ4(ε)nq−n1/tqn2)

= −δ4(ε)n− n1/t+ n2 > −2n1/t+ n2

≥ −2n1εδ3(1/4)/2 + n2 = −εδ3(1/4)n1 + n2

= −δ3(1/4)n2

(εn1
n2

)
+ n2 ≥ (1− δ3(1/4))n2.
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The final inequality used n1/n2 = n1/(n − n1) ≤ 1/ε since n1 ≤ (1 − ε)n.
Therefore |B| > q(1−δ3(1/4))n2 . As d′ ∈ [(1−ε/4)n1, n1] and from (4) we have
|(d− n1)− 11

40n2| = |
29
40n1 + 11

40n− d| ≤ 1, we find

d− d′ ∈ [d− n1, d− (1− ε/4)n1]

= [d− n1, (d− n1) + εn1]

⊂ [
11

40
n2 − 1,

11

40
n2 + εn1/4]

⊂ [
1

4
n2,

11

20
n2].

Here we again used n1/n2 = n1/(n− n1) ≤ 1/ε. This shows that B ⊂ [q]V2

satisfies |B| > q(1−δ3(1/4))n2 . By definition of δ3, there exists a pair y, y′ ∈ B
with dH(y, y′) = d−d′. But this gives x◦y, x′◦y′ ∈ C. As dH(x◦y, x′◦y′) = d
this completes the proof of this case.

Taking δ(ε) = min(δ3(ε), δ4(ε)) completes the proof of the Theorem.

4 Weak sunflowers in [q]n

In this section, we will prove Theorem 6. For convenience, we will assume
that n is a multiple of k with n = km; this assumption can easily be removed.
Set Vi = [(i − 1)m + 1, im] for all i ∈ [k]. We will prove by induction on
k that given ε > 0 and d ∈ [εm, (1 − ε)m] (with d even if q = 2), there
exists δ′ = δ′(ε, k) > 0 with the following property: for any set C ⊂ [q]n with
|C| > q(1−δ

′)n, there exists xi, yi ∈ [q]Vi for i ∈ [k] with dH(xi, yi) = d, such
that z1 ◦ · · · ◦ zk ∈ C for any choice of zi ∈ {xi, yi}. This will complete the
proof as taking

vi = x1 ◦ · · · ◦ xi−1 ◦ yi ◦ xi+1 ◦ · · · ◦ xk,

the set {v1, . . . , vk} is a weak-sunflower with k petals contained in C.
The case when k = 1 follows immediately from Theorem 3, so we will

assume by induction that the result holds for k − 1 and prove it for k. Let
W1 = ∪ki=2Vi so that [n] = V1 ∪W1. Letting t = d2/((k− 1)δ′(ε, k− 1))e, we
claim that we can take δ′ = δ′(ε, k) = δ(ε)/2kt, where δ(ε) is as in Theorem
3. Indeed, as in the proof of Lemma 12, view elements of [q]n as edges of a
bipartite graph G = ([q]V1 , [q]W1 , E) in which xy ∈ E(G) if x ◦ y ∈ C. Then
if |C| = |E(G)| = αqn where α > q−δ

′n, by Lemma 11, there exists a set
C1 ⊂ [q]V1 with

|C1| ≥ αtqm/2 ≥ q−δ(ε)n/2kqm/2 = q(1−δ(ε)/2)m/2 ≥ q(1−δ(ε))m
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with any two elements in C1 sharing at least

αq−m/tq(k−1)m > q−
δ(ε)n
2kt
−m
t q(k−1)m ≥ q−

2m
t q(k−1)m ≥ q(1−δ(ε,k−1))(k−1)m

common neighbours inG. But then, by Theorem 3, C1 must contain elements
x1 and x2 with dH(x1, x2) = d. Also, by the induction hypothesis for k− 1,
we find xi, yi ∈ [q]Vi for all i ∈ [2, k] with dH(xi, yi) = d such that all
elements of the set

{z2 ◦ · · · ◦ zk : zi ∈ {xi, yi} for all i ∈ [2, k]}

are common neighbours of both x1 and y1. But by definition of G, this
means that z1 ◦ · · · ◦ zl ∈ C for any choice of zi ∈ {xi, yi} for all i ∈ [k], as
claimed.

5 Forbidding distances between pairs of sets in [q]n

Proof of Theorem 8. Given ε we will take δ′(ε) = δ(ε/2)/2, where δ(ε/2) is

as in Theorem 3 and γ = min(ε/2, δ(ε/2)
16 log(1/δ(ε/2))). Let q ≥ 3 and suppose

that C,D ⊂ [q]n with |C| ≥ q(1−δ′)n and such that for all x ∈ C there is y ∈ D
with dH(x, y) ≤ γn. Suppose d ∈ (εn, (1 − ε)n). We will show that there
exists x ∈ C and y ∈ D with dH(x, y) = d.

From the statement, for all x ∈ C there is some yx ∈ D with dH(x, yx) ≤
γn. By pigeonholing, there must be a set T ⊂

(
[n]
γn

)
and a subset C′ ⊂ C with

|C′| ≥ |C|/
(
n
γn

)
≥ |C|2−H(γ)n with the property that, for all x ∈ C′, we have

{i ∈ [n] : (x)i 6= (yx)i} ⊂ T . There are at most qγn choices for both x|T and
yx|T , so again by pigeonholing we find C′′ ⊂ C′ with |C′′| ≥ |C′|/q2γn and
vectors f0, g0 ∈ [q]T such that x|T = f0 and yx|T = g0 for all x ∈ C′′. Let
dH(f0, g0) = t ≤ γn ≤ εn/2. Now by choice of γ, we have H(γ) ≤ δ(ε/2)/4
and γ < δ(ε/2)/8 and so

|C′′| ≥ |C|2−H(γ)nq−2γn ≥ q(1−δ(ε/2))n.

Therefore, since εn/2 ≤ d − γn ≤ d − t ≤ (1 − ε)n by Theorem 3 there are
x, x′ ∈ C′′ with dH(x, x′) = d− t. But then

dH(x′, yx) = dH(x, yx)︸ ︷︷ ︸
distance in T

+ dH(x′, x)︸ ︷︷ ︸
distance in [n] \ T

= dH(f0, g0) + dH(x′, x) = d.

As x′ ∈ C and yx ∈ D, this completes the proof.
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We will now show that the conditions of Theorem 8 can be applied to
C,D ⊂ [q]n with |C|, |D| ≥ (q − δ)n provided δ = δ(ε, q) > 0 is sufficiently
small, proving Corollary 9. Let Kn

q denote the graph on vertex set [q]n, in
which x, y ∈ [q]n are adjacent if they differ on a single coordinate. Given a
set C ⊂ [q]n, let N (t)(C) = {x ∈ [q]n : dH(x, x′) ≤ t for some x′ ∈ C}. The
following result gives an approximate vertex isoperimetric theorem for Kn

q

(see [18] or [3]).

Theorem 23. For all q ≥ 2 and γ > 0, there exists δ′′ = δ′′(γ, q) > 0
such that the following holds. Any set C ⊂ [q]n with |C| ≥ (q− δ′′)n satisfies
|N (γn)(C)| > qn − (q − δ′′)n.

Proof of Corollary 9. Let q ≥ 3 and ε > 0. We wish to show that, given any
C,D ⊂ [q]n with |C||D| > (q−δ)2n where δ = δ(ε, q) > 0 is sufficiently small,
for any d ∈ (εn, (1−ε)n) there exists x ∈ C and y ∈ D with dH(x, y) = d. By
taking δ to be sufficiently small it suffices to prove the result for n ≥ n0(ε, q).
Given our value of ε, let δ′ > 0 and γ > 0 be as in Theorem 8. We will take
δ = δ′′(γ, q)/4, with δ′′(γ, q) as in Theorem 23.

First note that as |C|, |D| ≤ qn we have |C|, |D| ≥ (q−δ)2n
qn > (q − 2δ)n.

Take C′ ⊂ C be the set C′ = {x ∈ C : ∃y ∈ D with dH(x, y) ≤ γn}. By
Theorem 8, it suffices to show that |C′| > q(1−δ

′)n. Suppose for contradiction
that this is not the case. Then for n ≥ n0, we have

|C \ C′| ≥ |C| − |C′| > (q − 2δ)n − q(1−δ′)n ≥ (q − 4δ)n = (q − δ′′)n.

Now by Theorem 23 we have |N (γn)(C \ C′)| > qn − (q − δ′′)n. However,
by definition of C′ we have D ∩ N (γn)(C \ C′) = ∅. As |D| ≥ (q − 2δ)n =
(q− δ′′/2)n > (q− δ′′)n this is a contradiction and it completes the proof of
the corollary.

6 Supersaturated version of Theorem 3

In this section we prove Theorem 10 which gives a supersaturated version
of Theorem 3. A rough outline of the proof is as follows. We will assume
for contradiction that we are given a large set C, as in Theorem 10, which
contains few pairs at Hamming distance d, for some εn ≤ d ≤ (1− ε)n. By
fixing some coordinate entries from [n] and restricting others, we will find a
large subset E ′ ⊂ [r]V1 with r ≤ q and (1 + α′)d ≤ |V1| ≤ n which contains
no pairs at distance d. However, if E ′ is a sufficiently large subset [r]V1 , this
will contradict Theorem 3.
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A technical complication which occurs in our proof is that on reducing
from [q]n to [r]V1 , it is possible that q ≥ 3 and d is odd, but that after
restricting we end up with r = 2. Note that in this case, we cannot apply
Theorem 3 to E ′, as only even distances can be guaranteed in [2]V1 . To get
around this obstacle, we first prove the case when d is even separately, and
then deduce the odd case from it by an application of dependent random
choice.

Proof of Theorem 10. To begin, we will set α = η/(16 log(16/η)) and δ′ =
ηεδ(α/2)/8, where δ is as in Theorem 3. Also set m = αn and r =
max{bqη/4c, 2}. Let C ⊂ [q]n with |C| > q(1−δ

′)n. We will show that given
d with εn ≤ d ≤ (1 − ε)n, the code C contains at least

(
n
d

)
(q − 1)d|C|q−ηn

pairs x, y ∈ C with dH(x, y) = d. As discussed above, we start by giving the
proof in the case where d is even.

LetN denote the number of pairs {x, y} with x, y ∈ C such that dH(x, y) =
d. Make the following selection of random choices:

• choose a partition of [n] = V1∪V2 with |V1| = d+m and |V2| = n−d−m
uniformly at random;

• for each i ∈ V1, choose a subset Qi ⊂ [q] of size r uniformly at random;

• for each i ∈ V2, choose an element qi ∈ [q] uniformly at random.

We will say that an element x ∈ C is a captured element if xi ∈ Qi for all
i ∈ V1 and xj = qj for all j ∈ V2. Let E ⊂ C denote the set of captured
elements. We also say that a pair {x, y} ∈ C(2) is a captured d-pair if x, y ∈ E ,
dH(x, y) = d and V2 ⊂ Agree(x, y).

Let X and Y denote the random variables which count the number of
captured elements and the number of captured d-pairs respectively. Clearly,
given x ∈ C, we have P(x ∈ E) = rd+m/qn. Therefore we have

E(X) =
rd+m|C|
qn

. (5)

For a fixed pair x, y ∈ C with dH(x, y) = d we have

P(x, y form a captured d-pair) =

(
d+m
d

)(
n
d

) ((r2)(
q
2

))d(r
q

)m
q−(n−d−m)

To see this we justify one term at a time. The first term is the probability
that the d coordinates on which x and y differ are included in V1. The second
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term is the probability that the entries xi and yi are included in Qi where
they differ. The third term is the probability that the remaining (common)
entries of xi = yi in V1 are included in Qi and the last term is the probability
that qi = xi for i ∈ V2.

Suppose for contradiction that N <
(
n
d

)
(q − 1)d|C|q−ηn. Then

E(Y ) =
(r
q

)m(r(r − 1)

q(q − 1)

)d
q−(n−d−m)

(
d+m
m

)(
n
d

) N

<

(
d+m

m

)
rd+m(r − 1)d

qn
|C|q−ηn

≤
((n

m

)
(r − 1)n

qηn

)rd+m|C|
qn

.

Now for α ≤ η/(16 log(16/η)) we have H(α) ≤ η/4 and so
(
n
m

)
≤ 2H(α)n <

qηn/4. Since we also have (r − 1) ≤ max{qη/4, 1} = qη/4 we have

E(Y ) ≤ 1

qηn/2
rd+m|C|
qn

≤ rd+m|C|
2qn

for n ≥ n0 ≥ 2/η. Combined with (5), as |C| ≥ q(1−δ′)n, this gives

E(X − Y ) ≥ rd+m|C|
2qn

≥ rd+mq−δ
′n

2
. (6)

But q−δ
′n = (qη/4)−δ(α/2)εn/2 ≥ r−δ(α/2)εn/2 ≥ r−δ(α/2)(d+m)/2 as d ≥ εn.

This shows that

E(X − Y ) ≥ r(1−δ(α/2)/2)(d+m)

2
> r(1−δ(α/2))(d+m). (7)

The second inequality here holds since rδ(α/2)(d+m)/2 ≥ rδ(α/2)εn/2 ≥ 2 for
n ≥ n0. Fix choices of V1, V2, Qi for all i ∈ V1 and qi for i ∈ V2 such that
X − Y is at least this big. Now remove one element from every captured
d-pair in E . By (7), this leaves a set E ′ ⊂ E with

|E ′| > r(1−δ(α/2))(d+m) (8)

which contains no captured d-pairs.
Now E ′ is a subset of

∏
i∈V1 Qi ×

∏
j∈V2{qj} and this product set is

naturally identified with [r]d+m. We also have

α

2
(d+m) ≤ d ≤

(
1− α

2

)
(d+m).
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Indeed, α(d + m)/2 ≤ d since m ≤ d and α ≤ 1 and d ≤ (1 − α/2)(d +
m) since αd/2 ≤ αn/2 = m/2 ≤ (1 − α/2)m. But now since E ′ does
not contain a pair (x, y) with dH(x, y) = d, by Theorem 3 we have |E ′| ≤
q(1−δ(α/2))(d+m). However this contradicts (8). Therefore we must have
N ≥

(
n
d

)
(q − 1)d|C|q−ηn, as required. This completes the proof of the case

of d even.
The case of d odd and q ≥ 3 can be deduced from the even case by

dependent random choice. As it is similar to previous steps, we only outline
the argument. Given ε and η as in the statement we will assume that γ and
ζ are chosen sufficiently small so that various estimates against functions of
ε and η hold. First choose a partition of [n] = V1 ∪ V2, where |V1| = γn.
By dependent random choice (see Lemma 11), provided that |C| ≥ q(1−δ)n

with δ = δ(γ, ζ) > 0 sufficiently small, there is a subset S ⊂ [q]V1 with
|S| ≥ q(1−ζ)|V1| such that for every pair x, y ∈ S, the set

Cx,y := {z ∈ [q]V2 : with x ◦ z, y ◦ z ∈ C}

satisfies |Cx,y| ≥ q(1−ζ)|V2|. Now as ζ is small, we can apply Theorem 3 to
S to find x, y ∈ S with dH(x, y) = d′ odd — this is possible since q ≥ 3.
Taking d′′ = d− d′, as d′ ≤ |V1| = γn, we have

ε|V2|/2 < εn− γn ≤ d′′ ≤ (1− ε)n ≤ (1− ε/2)|V2|,

provided γ was chosen with γ < ε/4.
We now use the even case proven above to guarantee that Cx,y contains

many pairs at Hamming distance d′′. Indeed, as |Cx,y| ≥ q(1−ζ)|V2| and d′′ is
even, if ζ was chosen so that ζ < δ′(ε/2, η/2), the even case shows that Cx,y
contains at least

(|V2|
d′′

)
(q− 1)d

′′ |Cx,y|q−η|V2|/2 pairs at Hamming distance d′′.
Expanding we find(

|V2|
d′′

)
(q − 1)d

′′ |Cx,y|q−η|V2|/2 ≥
(
n

d

)
(d)d′

(n)d′
× (q − 1)dq−d

′

× |C|q−ζn−γn × q−ηn/2

≥
(
n

d

)
(q − 1)d|C|

( ε
2

)γn
q−(ζ+2γ+η/2)n.

The second inequality here holds since
(d)d′
(n)d′

q−d
′ ≥ (ε/2)γnq−γn holds for

d′ ≤ γn < εn/2. For γ and ζ sufficiently small in comparison with ε and η,
this gives at least

(
n
d

)
(q − 1)d|C|q−ηn such pairs z, z′ ∈ Cx,y. But for each of

these pairs, we have x ◦ z, y ◦ z′ ∈ C and dH(x ◦ z, y ◦ z′) = d′+ d′′ = d. This
completes the proof.
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7 Concluding Remarks

In this paper we gave improved bounds on the size of codes and families
of permutations with a forbidden distance. These bounds demonstrate the
power of dependent random choice in forbidden distance problems and we
expect that the method will have many more applications in extremal set
theory.

It remains an intriguing open problem to obtain a better upper bound on
the size of maximum l-avoiding families A ⊂ P[n]. A natural construction
is to take all sets that are ‘large’ or ‘small’, where ‘large’ sets have size at
least (n+ l)/2 and ‘small’ sets have size less than l. (If n+ l is odd we can
also add all sets of size (n+ l − 1)/2 containing 1). For fixed l and large n,
Frankl and Füredi [13] proved that this is the unique extremal family.

However, much less is known when l is comparable with n. Under the
stronger condition of being (l + 1)-intersecting, Katona [17] showed that
the family of all large sets gives the optimal construction. Mubayi and
Rödl [19] conjectured that for the l-avoiding problem, with any εn < l <
(1/2 − ε)n, the same family of all large sets and all small sets as before
should be approximately optimal, say up to a multiplicative factor of 2o(n).
They proved this when the l-avoiding condition is replaced with the stronger
condition of having a small forbidden interval of intersections around l.

Acknowledgements

We would like to thank both referees for their careful reading of the paper
and for several helpful comments which improved the presentation.

References

[1] R. Ahlswede, L.H. Khachatrian: The diametric theorem in Hamming
spaces - optimal anticodes, Adv. Appl. Math. 20(4) (1998), 429-449.

[2] N. Alon, A. Shpilka, C. Umans: On sunflowers and matrix multiplica-
tion, Comput. Complexity 22(2) (2013), 219-243.

[3] B. Bollobás, I. Leader: Compressions and isoperimetric inequalities, J.
Combin. Theory Ser. A 56(1) (1991), 47-62.

[4] L. Babai, H. Snevily, R.M. Wilson: A new proof of several inequalities
on codes and sets, J. Combin. Theory Ser. A 71(1) (1995), 146-153.

20



[5] R.C. Baker, G. Harman: The three primes theorem with almost equal
primes, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 356
(1998), no. 1738, 763-780.

[6] H. Buhrman, R. Cleve, A. Wigderson: Quantum vs. classical commu-
nication and computation, Proceedings of 30th STOC (1998), 63-68.

[7] H. Chernoff: A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations, Ann. Math. Statistics 23(4) (1952),
493-507.

[8] M. Deza, P. Frankl: On the maximum number of permutations with
given maximal or minimal distance, J. Combin. Theory Ser. A 22(3)
(1977), 352-360.
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